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Abstract— We compare the image inpainting results of two
models of geometry of vision obtained through control the-
oretic considerations (the semi-discrete versions of the Citti-
Petitot-Sarti and Mumford Elastica models). The main feature
described by these models is the lifting of 2D images to the
3D group of translations and discrete rotations on the plane
SE(2, N), done by the primary visual cortex. Corrupted images
are then reconstructed by minimizing the energy necessary to
activate neurons corresponding to the missing regions. This
minimization procedure, which gives rise to Dubins/Reed–
Shepp-like optimal control problems in the case of corrupted
curves, is described by an hypoelliptic diffusion on SE(2, N).

We present two numerical algorithms for the resolution of
the diffusion equation in both models and then compare the
results.

I. INTRODUCTION

In this paper we present image inpainting algorithms based
on two models of the geometry of vision: the Citti-Petitot-
Sarti (CPS) model [8], [14] and the Mumford Elastica (ME)
model [13]. In particular, we improve on the semi-discrete
approach introduced in [6] for the CPS model, and compare
the image inpainting results obtained with the two models.

Assume that the grey levels of an image are given as a
square-integrable function f : R2 → [0, 1].

The crucial neuro-physiological fact behind the models
presented in this paper, is that the primary visual cortex V1
lifts the image from R2 to the bundle of directions of the
plane PTR2 = R2×PR. Indeed, with some simplifications,
neurons of V1 are grouped into orientation columns. Each
one of these columns is sensitive to visual stimuli at a given
point of the retina a ∈ R2 for a given direction v ∈ PR,
independently of its orientation.

If the image is corrupted on a set D ⊂ R2, i.e., if f is
defined only on R2 \D, the inpainting of f in D is obtained
by minimizing the cost representing the energy required to
the visual cortex to excite orientation columns corresponding
to points in D, and thus not directly excited by the image.
Neuro-physiological evidence suggests that this cost is small
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if the orientation column is near to already excited ones of
similar direction.

When the image to be reconstructed is a curve, this gives
rise to an optimal control problem that, depending on the
choice of the cost, can be either of Reed–Shepp-like type
(see e.g., [11], [18]) and defined on PTR2 in the case of
the CPS model, or Dubins-like (see [1], [11], [16], [17]) and
defined on the double cover of PTR2, the group of Euclidean
motions SE(2) = R2 × S1, in the case of the ME model.
When the image is more complex, the reconstruction is ob-
tained by applying the diffusion process naturally associated
with these control affine systems. Indeed, from a stochastic
point of view, one expects these diffusion process to follow
(and thus reconstruct) the most probable missing curves.

Recently, in [6], based on various precedent contributions
(see [12], [19]), the authors conjectured that indeed the visual
cortex can detect only a finite number N of directions.
This allows to replace PTR2 and SE(2) with the group
of translations and discrete rotations SE(2, N) = Z/NZ n
R2, where the rotations are either of step π/N or 2π/N ,
respectively. We remark that N needs not be large, indeed
in the numerical results we used N = 30.

Concerning how the visual cortex lifts an image to
SE(2, N), it seems likely that this is done through multiple
convolutions with orientation sensitive filters (like the Gabor
filters), see e.g. [9]. In this paper, we will consider only a
primitive version of this lift, where the lift Lf : SE(2, N)→
R of a function f : R2 → R is defined as follows.

• For the CPS model: (Lf)(x, y, r) = f(x, y) if rπ/N
is the angle in {kπ/N, k = 0, . . . , N − 1} nearest to
the direction (in [0, π)) of the level set of f passing
through (x, y), otherwise (Lf)(x, y, r) = 0. If no level
set is detected at (x, y), Lf(x, y, r) = f(x, y)/N for
any r.

• For the ME model: (Lf)(x, y, r) = f(x, y) if 2rπ/N or
2rπ/N+π is the angle in {2kπ/N, k = 0, . . . , 2N−1}
nearest to the orientation (in [0, 2π)) of the level set
of f passing through (x, y), otherwise (Lf)(x, y, r) =
0. If no level set is detected at (x, y), Lf(x, y, r) =
f(x, y)/2N for any r.

The main part of the paper is the presentation of the
aforementioned models and of two algorithms for the nu-
merical solution of the associated hypoelliptic diffusions. The
first one, has been introduced in [6] and is based on non-
commutative Fourier analysis and a standard finite-element
spatial discretization on the image domain. The second one,
which is the main contribution of this paper, is based on a
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periodic interpolation of the discrete input image, for which
the evolution can be computed exactly.

In the last part of the paper, we present some inpainting
results for the two models, obtained through these algo-
rithms. We remark that no a priori knowledge on the shape or
position of the corrupted area is required. Finally, we present
some results obtained through an heuristic procedure intro-
duced in [6] and called dynamic restoration. This procedure,
exploiting knowledge of the corrupted parts, allows us to
greatly improve our results.

The paper is structured as follows. In Section II, we
present the optimal control problems associated with the
two models. Then, in Section III, we define the hypoelliptic
diffusions associated with these control systems. Sections IV
and V are then devoted to describe the two algorithms used
to compute the evolutions, while Section VI compares the
image inpainting obtained through these algorithms. Finally,
in Section VII we collect our concluding remarks.

II. CONTROL THEORETIC APPROACH

In this section we present the optimal control problems
associated with the ME and the CPS models.

A. Curve reconstruction

Let γ0 : [a, b]∪[c, d]→ R2 be a smooth curve with missing
data. We assume that γ0(b) 6= γ0(c) and that the velocities
γ̇0(b) and γ̇0(c) are well-defined and non-vanishing. Our
aim is to find a curve γ : [b, c] → R2 completing γ0 and
minimizing some cost. For γ to complete γ0, we require
that γ(b) = γ0(b) and γ(c) = γ0(c). Also, depending on the
model, we will pose some conditions on the tangent vectors
at the extremities.

In the ME model, the curve is reconstructed via Euler’s
elastica. Namely, we look for arc-length parametrized curves
minimizing the energy-like cost

E1(γ) =

∫ length(γ)

0

(
1 +K2

γ(s)
)
ds, (1)

Recall that, if γ = (x, y), then Kγ = ẋÿ−ẏẍ
(ẋ2+ẏ2)3/2

.
Such cost is well-defined for any γ ∈ C2 parametrized

by arc-length. For v1, v2 ∈ R2, let v1 ∼ v2 if v1 = αv2 for
some α > 0. It is classical (see e.g., [3], [15]) that cost (1)
equipped with the initial conditions{

γ(b) = γ0(b) and γ(c) = γ0(c),

γ̇(b) ∼ γ̇0(b) and γ̇(b) ∼ γ̇0(b),
(2)

admits minimizers on this set.
On the other hand, in the CPS model, the curve is

reconstructed by fixing a time T > 0 and minimizing the
energy-like cost

E2(γ) =

∫ T

0

(
‖γ̇(t)‖2 + ‖γ̇(t)‖2Kγ(t)2

)
dt. (3)

For v1, v2 ∈ R2, let v1 ≈ v2 if v1 = αv2 for some α 6= 0.
Then, cost (3) admits minimizers when equipped with the

“projective” initial conditions{
γ(b) = γ0(b) and γ(c) = γ0(c),

γ̇(b) ≈ γ̇0(b) and γ̇(b) ≈ γ̇0(b).
(4)

We remark that these minimizers, as opposed to the ones
for cost (1), fail in general to be smooth since they admit
cusps. See [5], where it is also proved the lack of existence
of minimizers for cost (3) with initial conditions (2).

These costs, being small for short and straight curves, are
good models for the energy required to excite inactivated
neurons. However, the main reason of our interest is that they
can be naturally interpreted as the quadratic costs associated
with two control-affine systems, one on the space of the
Euclidean motions SE(2) and the other on the projectivized
tangent bundle of the plane PTR2.

B. Lift in SE(2) or in PTR2

Consider a smooth planar curve γ : [b, c] → R2 with
components (x, y). Then a natural lift of γ in SE(2) is
Lγ(t) = (x(t), y(t), θ(t)), where θ(t) ∈ R/2πZ represents
the direction of γ̇(t) with respect to the vector e1 = (1, 0).

Let us define on SE(2) the vector fields X1(x, y, θ) =
cos θ∂x + sin θ∂y and X2(x, y, θ) = ∂θ. Then, a curve γ̃ :
[b, c] → SE(2) is the lift of some arc-length parametrized
curve γ on R2 with γ̇ 6= 0 if and only if ˙̃γ = X1(γ̃) +
v(t)X2(γ̃) for some function v : [b, c]→ R.

Mutans mutandis, it is clear how to define the lift of planar
curves in PTR2, for which SE(2) is a topological double
cover. Since no confusion arise, to lighten the notation we
will still denote the lift by Lγ. Observe that the projection
of the vector fields X1 and X2 on PTR2 is well defined.
Hence, curves on PTR2 that are lifts of planar curves are
characterized by ˙̃γ = u1(t)X1(γ̃) + u2(t)X2(γ̃), where u =
(u1, u2) : [b, c]→ R2.

C. Associated control-affine problems

In the previous discussion, v(t) = Kγ(t) while u1(t) =
‖γ̇(t)‖ and u2(t) = ‖γ̇(t)‖Kγ(t). Thus, relaxing our re-
search to absolutely continuous curves, we can translate the
curve reconstruction problem in optimal control terms.

Namely, in the case of the ME model, we obtain the
following free-time control-affine optimal control problem
on SE(2),

(ẋ, ẏ, θ̇) = X1(x, y, θ) + vX2(x, y, θ),∫ T
0

(1 + v(t)2) dt −→ min,

T > 0,

(x(0), y(0), θ(0)) = Lγ(b),

(x(T ), y(T ), θ(T )) = Lγ(c).

(5)

For the CPS model, on the other hand, we obtain the
following nonholonomic optimal control problem on PTR2,

(ẋ, ẏ, θ̇) = u1(t)X1(x, y, θ) + u2X2(x, y, θ),∫ T
0

(u1(t)2 + u2(t)2) dt −→ min,

(x(0), y(0), θ(0)) = Lγ(b),

(x(T ), y(T ), θ(T )) = Lγ(c).

(6)
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Here, T > 0 is fixed.
We remark that, since the vector fields X1, X2, [X1, X2] =

sin θ∂x−cos θ∂y are linearly independent, both these control
systems satisfy the Hörmander condition, weakly in the case
of the ME model (see [4], [10]). In particular, due to this
fact, the control system in (6) defines a controllable sub-
Riemannian structure. Also the control system in (5) is
controllable, as it can be proved by direct computations.

III. STOCHASTIC INTERPRETATION

In this section we detail how to extend the curve re-
construction models described previously to image inpaint-
ing models. Henceforth, we will consider images given as
grayscale functions f : R2 → [0, 1]. Moreover, following
[6], we will assume the visual cortex to be able to detect
only a finite number N of angles, and hence we will work
on SE(2, N) = Z/NZ n R2.

The lifting procedure described in the introduction
amounts, in the case of the CPS model, to lift each level
curve of f as described in Section II-B. For the ME model,
on the other hand, the lifting of Section II-B takes into
account the direction of the curve while level curves have
no privileged directions. That is why we chose the lifting
procedure described in the introduction that simply lifts twice
each level curve: once with one orientation and once with
the opposite one. See [7] for a more detailed analysis of the
lifting procedure.

Once the function has been lifted, in principle one could
apply the algorithm for the reconstruction of corrupted curves
to reconstruct the corrupted level sets of the image. Although
this has been done, e.g., in [2], it is clear that this technique
cannot be applied to image inpainting for all types of images
and corruptions. Indeed, in general it is not clear how to
connect non-corrupted parts of the same level set.

To avoid this problem we adopt a stochastic point of view,
considering the hypoelliptic diffusion equations associated
with the control systems introduced in the previous section.
Heuristically, these diffusions process will follow the most
probable missing curves, reconstructing them.

First of all, let us define a jump Markov process Θt on
Z/NZ as follows. We let the law of the time of the first
jump to be exponentially distributed with parameter β > 0
and jump probability 1

2 on either side. Then, we obtain a
Poisson process, with the probability of k jumps before time
t > 0 given by

P (k jumps in [0, t]) =
(βt)k

k!
e−βt.

The infinitesimal generator of Θt is the matrix ΛN =
(λi,j)

N−1
i,j=0, defined by λi,i±1 = 1

2β, λi,i = −β and all the
others λi,j equal to zero.

A. Citti-Petitot-Sarti model

This is the model considered in [6], to which we refer for
additional details.

Let us consider the following stochastic process with
jumps

dZt =

(
cos Θt

sin Θt

)
dWt.

Here, Θt is a jump process on Z/NZ and Wt is a Wiener
process on R2.

Then, the infinitesimal generator of the semi-group as-
sociated with the stochastic process (Zt,Θt) acts on any
ψ : SE(2, N)→ C as

LNψ =
1

2
A2
rψ + (ΛNψ)r.

Here, (ΛNψ(x, y, r))r = β
2 (ψ(x, y, r − 1) − 2ψ(x, y, r) +

ψ(x, y, r+1)) and Ar = cos θr∂x+sin θr∂y , where θr = πr
N .

Thus, representing functions on SE(2, N) as φ : R2 →
CN and letting A = diag(Ar), the diffusion equation for the
CPS model is

dφ

dt
=

1

2
A2φ+ ΛNφ. (7)

As proved in [6], when N → +∞, diffusion (7) converges
towards the standard CPS model hypoelliptic diffusion evo-
lution on PTR2

dϕ

dt
=

1

2
(cos θ∂x + sin θ∂y)2ϕ+

β

2
∂2θϕ.

Here, ϕ : PTR2 → R. This diffusion equation, as detailed
in [14], [7], is associated with the sub-Riemannian control
system (6).

B. Mumford Elastica model

Consider the Poisson process Θt defined before, and
consider the following Markov process, introduced in [13],

dXt =

(
cos Θt

sin Θt

)
dt.

Here, no Wiener process on R2 is considered.
Then, the infinitesimal generator of the semi-group as-

sociated with the stochastic process (Xt,Θt) acts on any
ψ : R2 × Z/NZ→ C as

LNψ = Arψ + (ΛNψ)r,

where Ar and ΛN are defined in the previous sections.
Observe that, due to the absence of white noise, we obtain
a diffusion operator with drift.

The diffusion equation for the ME model is then

dφ

dt
= Aφ+ ΛNφ, (8)

for any function on SE(2, N) represented as φ : R2 → CN .
Letting N → +∞, diffusion (8) converges towards the

hypoelliptic diffusion on SE(2)

dϕ

dt
= (cos θ∂x + sin θ∂y)ϕ+

β

2
∂2θϕ,

which is associated with the control-affine system (5).
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IV. EVOLUTION THROUGH DISCRETIZATION

In [6] a numerical scheme for the resolution of the
CPS model is presented. Such model is based on a spatial
discretization of the diffusion equation. In this section we
describe this scheme and apply it also to the ME model.

Let the input image f being given as an M ×M table
of real values between [0, 1]. We consider G ⊂ R2 to
be the M × M grid on the plane with discretization step
∆x = ∆y =

√
M , i.e., such that the mesh points are xk =

(k − 1)/
√
M and yl = (l − 1)/

√
M for k, l = 0, . . . ,M−1.

In the following, for any function ψ defined on SE(2, N),
we will denote ψrk,l = ψ(xk, yl, r).

To discretize equations (7) and (8), we replace the differ-
ential operators ∂x and ∂y appearing in the operators Ar by
their finite element approximations

Dxψ
r
k,l =

ψrk+1,l − ψrk−1,l
xk+1 − xk−1

=

√
M

2
(ψrk+1,l − ψrk−1,l),

Dyψ
r
k,l =

ψrk,l+1 − ψrk,l−1
yl+1 − yl−1

=

√
M

2
(ψrk,l+1 − ψrk,l−1).

Then, the discretized version of A is D = diag(cos θrDx +
sin θrDy). Replacing D to A in equations (7) and (8), we
obtain their discretized versions. The initial condition for
these equations will be the discrete analogue of the function
Lf on SE(2, N) obtained by lifting the original image.

Let us denote by ψ̂rk,l the discrete Fourier transform
(DFT) of ψ w.r.t. the variables k, l. Then, a straightforward
computation shows that Aψ̂rk,l = i

√
Mark,lψ

r
k,l, where

ark,l = cos θr sin

(
2π
k − 1

M

)
+ cos θr sin

(
2π
l − 1

M

)
.

Hence, the diffusion equations (7) and (8) are mapped
by the DFT in the completely decoupled systems of M2

ordinary linear differential equations on CN , respectively,

dψ̂k,l
dt

=

(
ΛN −

M

2
diagr(a

r
k,l)

2

)
ψ̂k,l,

dψ̂k,l
dt

=

(
ΛN + i

M

2
diagr(a

r
k,l)

)
ψ̂k,l,

where k, l = 0, . . . ,M − 1 and ψ̂k,l = (ψ̂0
k,l, . . . , ψ̂

N−1
k,l )∗.

These discretized equations can then be solved through
any numerical scheme. We chose the Crank-Nicolson
method, for its good convergence and stability properties.
Let us remark that the operators appearing on the r.h.s. are
periodic tridiagonal matrices, i.e. tridiagonal matrices with
non-zero (1, N) and (N, 1) elements. Thus, the linear system
appearing at each step of the Crank-Nicolson method can be
solved through the Thomas algorithm for periodic tridiagonal
matrices, of computational cost O(N).

V. EVOLUTION THROUGH PERIODIC APPROXIMATION

We now present a new algorithm for the resolution of the
CPS and ME diffusions.

A. Diffusion on trigonometric polynomials

For a compact subset K of R2, let SE(2, N,K) be the
set of CN -valued trigonometric polynomials Q(x, y) with
components,

Qr(x, y) =
∑

(λk,µl)∈K

crk,le
i(λkx+µly), r = 0, . . . , N − 1.

(9)
Here, crk,l ∈ C. Then, the semi-discrete diffusions (7) and
(8) can be restricted to SE(2, N,K), where they split in the
completely uncoupled systems of linear ordinary differential
equations

dck,l
dt

= −2π2diag (λk cos θr + µl sin θr)
2
ck,l + ΛNck,l,

(10)
dck,l
dt

= iπdiag (λk cos θr + µl sin θr) ck,l + ΛNck,l, (11)

where ck,l(t) = (c0k,l(t), . . . , c
N−1
k,l (t))∗. These systems are

equipped with initial conditions ck,l(0) = ck,l from (9).
For the numerical resolution of these equations, the same

considerations made at the end of Section IV are valid.
Remark 1: By [6, Theorem 2], solving (10) or (11) for

some couple (λk, µl) is equivalent to solve it for any rotated
couple Rr(λk, µl), associated with r ∈ Z/NZ. Thus, if the
set K is invariant with respect to rotations Rr, r ∈ Z/NZ,
it is indeed sufficient to solve (10) or (11) for a slice of K
whose orbit under the rotations cover the whole K.

B. Periodic interpolation

Any almost-periodic function ψ on SE(2, N) is the
uniform limit of CN -valued trigonometric polynomials of
the form (9). Moreover, being a Moore group (all its ir-
reducible representations are finite-dimensional), SE(2, N)
is maximally almost periodic, and hence every continuous
function on SE(2, N) can be uniformly approximated by
almost-periodic functions. This yields to observe that given
a continuous function on SE(2, N) we could uniformly
approximate it by a trigonometric polynomial of the form
(9) and then evolve this approximation using (10) or (11).

Unfortunately, due to our choice of lift operation, there is
no hope for any lifted image to be continuous on SE(2, N),
and hence this idea cannot be realized. We now show how to
avoid this problem, exploiting the fact that the images (and
their lifts) are indeed discrete functions defined on some pixel
mesh G ⊂ R2.

Let ψ be a scalar function defined on Z/NZ × G ⊂
SE(2, N), in particular ψ could be the discrete lift of an
image. We will let, as before, ψrk,l = ψ(xk, yl, r) where
(xk, yl) is an enumeration of G and r = 0, . . . , N−1. Then,
for any r, the discrete Fourier transform ψ̂rk,l is defined on
(λk, µl) ∈ Ĝ, the Pontryagin dual grid of G. Finally, we
define the polynomial Q ∈ SE(2, N, Ĝ) by

Qr(x, y) =
∑

(λk,µl)∈Ĝ

ψ̂rk,le
2πi(xλk+yµl). (12)
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By Pontryagin duality, Q coincides with ψ when evaluated
on points of the grid G. This interpolation allows to evolve
ψ exactly using the uncoupled systems (10) and (11).

C. Numerical implementation

Let us explain more in detail how to obtain the coefficients
of the approximation (12) starting from an image f defined
on a square compact grid G with the sides composed of M
pixels.

Up to translating the image, we can assume G to be
symmetric w.r.t. the origin. As before, we consider the points
of the grid to be uniformly spaced by

√
M , and hence the

points of the grid have coordinates

xk =
k√
M
− M − 1

2
√
M

and yl =
l√
M
− M − 1

2
√
M

.

By standard considerations, it holds that Ĝ = G.
Remark 2: The interpolating polynomial obtained in (12)

is periodic on R2. If, as it is customary, we consider G to be
contained in some square [0,M ]×[0,M ] of the first quadrant,
then due to Remark 1 solving the equation (10) or (11) on
Ĝ indeed solves it on the bigger grid K obtained as orbit
of Ĝ under the rotations Rr, r ∈ Z/NZ. Hence, in order
to recover correctly the inpainted image, one should take
the inverse Fourier transform of the whole K and cut it as
to contain only one copy of the inpainted image. Assuming
the grid G to be symmetric w.r.t. the origin allows to avoid
this step, since the orbit K is almost entirely contained in
the same square as Ĝ, and thus the information loss due to
ignoring it is small.

The following proposition shows that, up to elementwise
operations, the computation of the discrete Fourier transform
in (12) can be reduced to the discrete Fourier transform of
an M ×M matrix, computable through the FFT algorithm.

Proposition 1: Let f : G → R. Then, for any (xr, ys) ∈
G, it holds

f(xr, ys) =
∑

(λk,µl)∈Ĝ

f̂(λk, µl)e
2πi(xrλk+ysµl), (13)

with

f̂(λk, µl) =
1

M
e2πi

M−1
2M (k+l)

DFTr,s

(
e−2πi(

M−1
2M )

2

e
2πi
M (r+s)f(xr, ys)

)
(k, l).

Here, DFTr,s denotes the discrete Fourier transform of a
function depending on r and s. Namely

DFTr,s(g(r, s))(k, l) =
1

M

M−1∑
r,s=0

g(r, s)e
2πi
M (rk+sl).

Proof: By (13), the expressions for (xr, ys) ∈ G and
(λk, µl) ∈ Ĝ, and straightforward computations, we obtain

e−
2πi
M (M−1

2 )
2

e
2πi
M (M−1

2 )(r+s)f(xr, ys) =

1

M

M−1∑
k,l=0

ak,lMe−
2πi
M (M−1

2 )(k+l)e
2πi
M (rk+sl).

Fig. 1. Original image. Fig. 2. Corrupted image.

Fig. 3. CPS model, with the discretization (left) and periodic approximation
(right) algorithms.

Fig. 4. ME model, with the discretization (left) and periodic approximation
(right) algorithms.

Observe that f ∈ L2(G), with respect to the Haar mea-
sure on G. Then, by Pontryagin duality, taking the Fourier
transform on both sides of the equation yields the statement.

Remark that, to use the indexes (k, l) instead of (λk, µl) in
the ODEs (10) and (11), it is necessary to make the change of
variables λk = k/M−(M−1)/2 and µl = l/M−(M−1)/2.

VI. NUMERICAL RESULTS

The numerical implementation has been done mainly in
Python, with the numerical resolution of equations (10)
and (11) being implemented as a FORTRAN routine, for
performances reasons.

A. Comparison of the models and the algorithms

In Figures 3 and 4 we present four examples of inpainting
of the corrupted image in Figure 2, obtained through a very
simple corruption of Figure 1.
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Fig. 5. CPS (left) and ME (right) models with long time of diffusion.

In particular, Figures 3(a) and 4(a) present the image
inpainting results obtained using the discretization evolution
scheme of Section IV, while Figures 3(b) and 4(b) present
the image inpainting obtained from the periodic interpolation
evolution scheme of Section V. Clearly, in all these examples
the diffusions are applied for short time, to avoid an excessive
action on the non-corrupted parts.

To better appreciate the purely diffusive nature of the CPS
model as opposed to the presence of a transport term in the
ME model, we present in Figure 5 two examples where the
evolutions are applied on long time. Both these examples are
obtained through the periodic interpolation algorithm.

B. Heuristic complements

The algorithms presented in this paper do not use any
information on the corrupted area. In [6] an heuristic algo-
rithm to improve on the results when information on the
corrupted parts is available is presented. Without entering in
the details, this procedure is based on mixing the evolved
lifted image with the original lifted image where the image
is not corrupted at given intervals of time. This can then
be coupled with a technique to dynamically update the set
of non-corrupted points, and the original image, allowing
previously corrupted points to be considered non-corrupted
when they become sufficiently similar to the neighboring
pixels.

In Figure 6 we present two inpaintings obtained by apply-
ing this procedure to the periodic approximation algorithm.

VII. CONCLUSIONS

In this paper, we presented two models of geometry of
vision with their control theoretic motivations, and their
application to image inpainting via hypoelliptic diffusion.
Moreover, we presented two algorithms to numerically com-
pute this diffusion.

From the numerical experiments we did, the periodic
approximation algorithm introduced in Section V of this
paper, seem to be the more faithful and numerically stable.
Once again, we would like to remark the fact that, except in
Section VI-B, no information regarding the corruption has
been used.

Fig. 6. Dynamic restoration with the CPS (left) and ME (right) models.
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