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RECENT RESULTS ON THE ESSENTIAL
SELF-ADJOINTNESS OF SUB-LAPLACIANS, WITH

SOME REMARKS ON THE PRESENCE OF
CHARACTERISTIC POINTS

Valentina Franceschi, Dario Prandi & Luca Rizzi

Abstract. — In this proceeding, we present some recent results obtained in [4]
on the essential self-adjointness of sub-Laplacians on non-complete sub-Riemannian
manifolds. A notable application is the proof of the essential self-adjointness of the
Popp sub-Laplacian on the equiregular connected components of a sub-Riemannian
manifold, when the singular region does not contain characteristic points. In their
presence, the self-adjointness properties of (sub-)Laplacians are still unknown. We
conclude the paper discussing the difficulties arising in this case.

1. A criterion for essential self-adjointness of
sub-Laplacians

Let N be a complete sub-Riemannian manifold, with distribution D. Let
Z ⊂ N be a smooth embedded hypersurface with no characteristic points,
i.e. D t Z. Let ω be a measure on N , smooth on M = N \ Z. In the
following, we denote with L2(M) the complex Hilbert space of functions
u : M → C, with scalar product

(1.1) 〈u, v〉 =
∫
M

uv̄ dω, u, v ∈ L2(M),

where the bar denotes complex conjugation. The corresponding norm is
‖u‖2 = 〈u, u〉. Similarly, given a coordinate neighborhood U ⊆ M and
denoting by dx the Lebesgue measure on it, we denote by L2(U,dx) the
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complex Hilbert space of square-integrable functions u : U → C satisfy-
ing (1.1) with dω replaced by dx and M by U .

The sub-Laplacian ∆ω is the operator

(1.2) ∆ωu := divω(∇u), ∀ u ∈ C∞c (M),

where the divergence divω is computed with respect to the measure ω, and
∇ is the sub-Riemannian gradient. Equivalently, −∆ω can be defined as
the non-negative operator associated with the quadratic form

(1.3) E(u, v) :=
∫
M

g(∇u,∇v̄) dω, ∀ v, w ∈ C∞c (M).

When Z = ∅ and the sub-Riemannian structure on N is complete, the
sub-Laplacian is essentially self-adjoint [10]. This problem, which is related
with the quantum confinement phenomenon, is treated in [4]. There, the
authors prove the following self-adjointness criterion.

Theorem 1.1 (Main quantum completeness criterion). — Let N be a
complete sub-Riemannian manifold endowed with a measure ω. Assume ω
to be smooth on N \ Z, where the singular set Z is a smooth, embedded,
compact hypersurface with no characteristic points. Assume also that, for
some ε > 0, there exists a constant κ > 0 such that, letting δ = d(Z, · ), we
have

(1.4) Veff =
(

∆ωδ

2

)2
+
(

∆ωδ

2

)′
>

3
4δ2 −

κ

δ
, for 0 < δ 6 ε,

where the prime denotes the derivative in the direction of ∇δ. Then ∆ω

with domain C∞c (M) is essentially self-adjoint in L2(M), whereM = N\Z,
or any of its connected components.
Moreover, ifM is relatively compact, the unique self-adjoint extension of

∆ω has compact resolvent. Therefore, its spectrum is discrete and consists
of eigenvalues with finite multiplicity.

Remark 1.2. — The compactness of Z in Theorem 1.1 can be replaced
by the weaker assumption that the (normal) injectivity radius from Z is
strictly positive.

Following the strategy developed in [7, 8], the first part of Theorem 1.1 is
proved by a two-step approach based on Hardy inequality and Agmon-type
estimates, see Section 1.1. This strategy can be successfully implemented
thanks to the existence of a normal tubular neighborhood close the singular
region Z, described in the following Proposition 1.3 (see also Figure 1.1).
The distance from the singular region is δ : N → [0,∞),

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



ON THE ESSENTIAL SELF-ADJOINTNESS OF SUB-LAPLACIANS 3

Z
Mε ≃ (0, ε)×Xε

Xε

N

N

Figure 1.1. Tubular neighborhood of the singular region.

(1.5) δ(p) = inf{d(q, p) | q ∈ Z}, ∀ p ∈ N.

Proposition 1.3 (Tubular neighborhood for smooth hypersurfaces
without characteristic points). — Let N be a smooth sub-Riemannian
manifold and Z ⊂ N be a smooth, embedded, compact hypersurface with
no characteristic points. Then:

(1) δ : N → [0,∞) is Lipschitz w.r.t. the sub-Riemannian distance and
|∇δ| 6 1 a.e.;

(2) there exists ε > 0 such that δ : Mε → [0,∞) is smooth, where
Mε = {0 < δ(p) < ε};

(3) letting Xε = {δ(p) = ε}, there exists a smooth diffeomorphism
F : (0, ε)×Xε →Mε, such that

(1.6) δ(F (t, q)) = t and F∗∂t = ∇δ, for (t, q) ∈ (0, ε)×Xε.

Moreover, |∇δ| ≡ 1 on Mε.

Remark 1.4. — Proposition 1.3 can be simplified if Z is two-sided (e.g.
when N and Z are orientable). In this special case, Mε = (−ε, 0) × Z t
(0, ε)×Z and there is no need to introduce Xε. Moreover, the compactness
assumption here can be replace by the weaker assumption that the (normal)
injectivity radius from Z is strictly positive.

The main criterion presented in Teorem 1.1 is the sub-Riemannian gen-
eralization of Theorem 1 in [8]. The new aspects of the proof are the ex-
ploitation of subellipticity to obtain regularity properties of weak solutions,
and the sub-Riemannian version of the Rellich–Kondrachov theorem. We

VOLUME 33 (2015-2016)



4 VALENTINA FRANCESCHI, DARIO PRANDI & LUCA RIZZI

present them in the next Lemmas 1.5 and 1.6. We introduce some nota-
tions. Given a sub-Riemannian manifold M equipped with a smooth mea-
sure ω, we denote by W 1(M) the Sobolev space of functions in L2(M)
with distributional sub-Riemannian gradient ∇u ∈ L2(D), where the latter
is the complex Hilbert space of sections of the complexified distribution
X : M → DC ⊆ TMC, with scalar product

(1.7) 〈X,Y 〉 =
∫
M

g(X,Y ) dω, X, Y ∈ L2(D).

The Sobolev spaceW 1(M) is a Hilbert space when endowed with the scalar
product

(1.8) 〈u, v〉W 1 = 〈∇u,∇v〉+ 〈u, v〉.

Similarly, given a coordinate neighborhood U ⊆ M and denoting by dx
the Lebesgue measure on it, we denote by W 1(U,dx) the Sobolev space
of functions in L2(U,dx), with distributional (sub-Riemannian) gradient
in L2(D|U ,dx), that is the complex Hilbert space of sections of the of the
complexified distribution X : U → DC ⊆ TMC, with the scalar product de-
fined in (1.7) where dω is replaced by dx. Moreover, we denote by L2

loc(M)
and W 1

loc(M) the space of functions u : M → C such that, for any rela-
tively compact domain Ω ⊆M , their restriction to Ω belongs to L2(Ω) and
W 1(Ω), respectively.
To adhere to the standard notation in quantum physics, let H = −∆ω,

with domain Dom(H) = C∞c (M). The associated symmetric bilinear form
is

(1.9) E(u, v) =
∫
M

g(∇u,∇v) dω, u, v ∈ C∞c (M).

We use the same symbol to denote the above integral for all functions u, v ∈
W 1

loc(M), when it is convergent. We also let, for brevity, E(u) = E(u, u) > 0.

Lemma 1.5. — Let M be a sub-Riemannian manifold equipped with a
smooth measure ω. Then Dom(H∗) ⊆W 1

loc(M).

Lemma 1.5 implies that for any ψ ∈ Dom(H∗), its energy E(ψ) is well de-
fined. This is crucial in the proof of the Agmon estimate of Proposition 1.8
(see inequality (1.17)).

Lemma 1.6 (Sub-Riemannian Rellich–Kondrachov theorem). — Let M
be a sub-Riemannian manifold equipped with a smooth measure ω. Let
Ω ⊆ M be a compact domain with Lipschitz boundary. Then W 1(Ω) is
compactly embedded into L2(Ω).

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



ON THE ESSENTIAL SELF-ADJOINTNESS OF SUB-LAPLACIANS 5

Lemma 1.6 will be used to prove compactness of the resolvent of ∆ (under
the assumption that M is relatively compact), see Section 1.2

1.1. Weak Hardy inequality and Agmon-type estimates

By using the diffeomorphism of Proposition 1.3 to identify Mε ' (0, ε)×
Xε, the measure ω reads

(1.10) dω(t, q) = e2θ(t,q)dt dµ(q), (t, q) ∈Mε,

where dµ is a fixed smooth measure on Xε, and θ is a smooth function.
This leads to the following expression for Veff :

(1.11) Veff = (∂tθ)2 + ∂2
t θ.

Hence, condition (1.4) reads locally

(1.12) Veff >
3

4t2 −
κ

t
for 0 < t 6 ε.

A combination of (1.12) together with the 1-dimensional Hardy inequality
leads to the weak Hardy inequality (1.14) presented in the next Proposi-
tion 1.7.

Proposition 1.7 (Weak Hardy Inequality). — Let N be a complete
sub-Riemannian manifold endowed with a measure ω. Assume ω to be
smooth on M = N \ Z, where the singular set Z is a smooth, embedded,
compact hypersurface with no characteristic points. Assume also that there
exist κ > 0 and ε > 0 such that

Veff >
3

4δ2 −
κ

δ
, for δ 6 ε.(1.13)

Then, there exist η 6 1/κ and c ∈ R such that

(1.14)
∫
M

|∇u|2 dω >
∫
Mη

(
1
δ2 −

κ

δ

)
|u|2 dω+ c‖u‖2, ∀ u ∈W 1

comp(M),

where Mη = {0 < δ < η}. In particular, the operator H = −∆ω is semi-
bounded on C∞c (M).

The proof of Proposition 1.7 in the case u ∈W 1
comp(Mε) follows by (1.12)

and the 1-dimensional Hardy inequality. To extend it to u ∈W 1
comp(M) one

needs a localization argument, exploiting the boundlessness of |∇δ| (see
Proposition 1.3).
We now state the Agmon-type estimate that, combined with Proposi-

tion 1.7, allows to prove the self-adjointness statement in Theorem 1.1.

VOLUME 33 (2015-2016)



6 VALENTINA FRANCESCHI, DARIO PRANDI & LUCA RIZZI

Proposition 1.8 (Agmon-type estimate). — Let N be a complete sub-
Riemannian manifold endowed with a measure ω. Assume ω to be smooth
onM = N\Z, where the singular set Z is a smooth embedded hypersurface
with no characteristic points. Assume also that there exist κ > 0, η 6 1/κ
and c ∈ R such that,

(1.15)
∫
M

|∇u|2 dω >
∫
Mη

(
1
δ2 −

κ

δ

)
|u|2dω+ c‖u‖2, ∀ u ∈W 1

comp(M).

Then, for all E < c, the only solution of H∗ψ = Eψ is ψ ≡ 0.

Sketch of the proof. — The proof follows the ideas of [7, 12] and is
divided into two steps:

Step 1. — Let ψ be a solution of (H∗−E)ψ = 0 for some E < c. For any
bounded function f : M → R which is Lipschitz w.r.t. the sub-Riemannian
distance and satisfies supp f ⊆M \Mζ , for some ζ > 0, we have:

(1.16) (c− E)‖fψ‖2 6 〈ψ, |∇f |2ψ〉 −
∫
Mη

(
1
δ2 −

κ

δ

)
|fψ|2dω.

This is due to the Hardy inequality (1.15) and to an easy computation that
leads to

(1.17) E(fψ) = E‖fψ‖2 + 〈ψ, |∇f |2ψ〉.

Step 2. — A particular f is now plugged into (1.16), by setting

(1.18) f(p) :=
{
F (δ(p)) 0 < δ(p) 6 η,
1 δ(p) > η,

for a Lipschitz function F to be chosen in order to satisfy the assumptions
of Step 1. Since |∇δ| 6 1 a.e. on M , we have, on Mη, |∇f | = |F ′(δ)||∇δ| 6
|F ′(δ)|. Thus, (1.16) implies

(1.19) (c− E)‖fψ‖2 6
∫
Mη

[
F ′(δ)2 −

(
1
δ2 −

κ

δ

)
F (δ)2

]
|ψ|2dω.

We continue the proof for the case κ = 0. The following arguments can be
adapted also to the cases κ 6= 0. For 0 < ζ < 2ζ < η, we choose F for
τ ∈ [2ζ, η] to be the solution of

(1.20) F ′(τ) = 1
τ
F (τ), with F (η) = 1,

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



ON THE ESSENTIAL SELF-ADJOINTNESS OF SUB-LAPLACIANS 7

to be zero on [0, ζ], and linear on [ζ, 2ζ]. Namely:

(1.21) F (t) =


0 t ∈ [0, ζ],
2
η (t− ζ) t ∈ [ζ, 2ζ],
1
η t t ∈ [2ζ, η),

F ′(t) =


0 t ∈ [0, ζ],
2
η t ∈ [ζ, 2ζ],
1
η t ∈ [2ζ, η).

From (1.19), this leads to

(1.22) (c− E)‖fψ‖2 6
∫
M2ζ\Mζ

[
F ′(δ)2 − 1

δ2F (δ)2
]
|ψ|2dω

6 K2
∫
M2ζ\Mζ

|ψ|2dω

for a constant K > 0. If we let ζ → 0, then f tends to an almost everywhere
strictly positive function. Recalling that E < c, and taking the limit, (1.22)
implies ψ ≡ 0. �

Remark 1.9. — If (1.15) is replaced with the weaker assumption

(1.23)
∫
M

|∇u|2 dω > a
∫
Mη

(
1
δ2 −

κ

δ

)
|u|2dω+c‖u‖2, ∀ u ∈W 1

comp(M)

for 3
4 < a < 1, then the arguments in the previous proof cannot be applied.

In fact, defining F as in (1.20) it is impossible to find a constant K > 0
such that (1.22) is satisfied.

1.2. Sketch of the proof of Theorem 1.1

To prove that ∆ω with domain C∞c (M) is essentially self-adjoint in
L2(M) we apply the classical criterion of [9, Thm. X.I and Corollary]:
since H is semibounded (by Proposition 1.7), H is essentially self-adjoint if
and only if there exists E < 0 such that the only solution of H∗ψ = Eψ is
ψ ≡ 0. This is guaranteed by the Agmon-type estimate of Proposition 1.8,
whose hypotheses are satisfied again by the conclusion of Proposition 1.7.
To prove compactness of the resolvent it is sufficient to show existence of

a value z < c such that the resolvent (H∗− z)−1 is compact on L2(M). To
this purpose one must prove that for any bounded sequence ψn ∈ L2(M),
say ‖ψn‖ 6 (c− z), the image un = (H∗ − z)−1ψn ∈ Dom(H∗) has a sub-
sequence converging in L2(M). To prove it we decompose un = un,1 +un,2
where un,1 is supported in a neighborhood of Z and un,2 is compactly
supported in a neighborhood of M \ Z. By using the sub-Riemannian
Rellich–Kondrachov theorem of Lemma 1.6 it is possible to show that un,2

VOLUME 33 (2015-2016)



8 VALENTINA FRANCESCHI, DARIO PRANDI & LUCA RIZZI

converges up to subsequences in L2(M). Moreover, by the weak Hardy
inequality (1.14), it is possible to show that for all k ∈ N, there is a subse-
quence n 7→ γk(n) such that uγk(n) =

∑2
i=1 uγk(n),i with ‖uγk(n),1‖ 6 C/k

and uγk(n),2 is convergent in L2(M). Exploiting these facts, a Cauchy sub-
sequence of un can be extracted, yielding the compactness of (H∗ − z)−1,
and concluding the proof. �

2. Applications to the Popp sub-Laplacian

Theorem 1.1 can be applied to study essential self-adjointness of the
sub-Laplacian ∆ = ∆P , where P is the intrinsic Popp’s measure.

2.1. Popp’s measure

Popp’s measure was introduced in [6]. It was used in [1] to define an
intrinsic sub-Laplacian in the sub-Riemannian setting. In the following, we
will use the explicit formula for Popp’s measure given in [2] in terms of
adapted frames, in order to define Popp’s measure. For an intrinsic defini-
tion, we refer to [6, 2].

Let r(q) = dim(Dq) be the rank of the distribution at q ∈ N . Moreover,
for k ∈ N, let

(2.1) Dkq := span{[X1, . . . , [Xj−1, Xj ]]q : Xi ∈ Γ(D), j 6 k}.

We call the step of the sub-Riemannian structure at q the minimal integer
s = s(q) ∈ N such that Dsq = TqN .

Definition 2.1. — Let A ⊆ N . We say that a sub-Riemannian struc-
ture on N is equiregular on A if dim(Dkq ) is constant for q ∈ A and for any
k ∈ N.

Remark 2.2. — Already r(q) = dim(D1
q) can be non-constant. For in-

stance, this is the case of almost-Riemannian manifolds, where there exists
a closed set Z ⊂ N such that dim(D1

q) = dimN for every q ∈ N \ Z.

Let O ⊆ N be an equiregular neighborhood of an n-dimensional sub-
Riemannian manifold N . A local frame X1, . . . , Xn on O is said to be
adapted to the sub-Riemannian structure if X1, . . . , Xki is a local frame
for Di, where ki = dim(Di) is constant on O. In particular r(q) ≡ r is
constant on O. Notice that, the equiregularity assumption means that, on

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



ON THE ESSENTIAL SELF-ADJOINTNESS OF SUB-LAPLACIANS 9

O, Di are “true” distributions, and hence that there always exists a local
adapted frame. Define the smooth functions b`i1...ij ∈ C

∞(N) as

(2.2) [Xi1 , [Xi2 , . . . , [Xij−1 , Xj ]]] =
kj∑

`=kj−1+1
b`i1i2...ijX` mod Dj−1,

where 1 6 i1, . . . , ij 6 m = dim(D1). Consider the kj − kj−1 dimensional
square matrices

(2.3) (Bj)h` =
r∑

i1,...,ij=1
bhi1,...,ij b

`
i1,...,ij , ∀ j = 1, . . . , s,

where s is the step of the structure. Then, denoting by ν1, . . . , νn the dual
frame to X1, . . . , Xn, the Popp’s measure reads

(2.4) P = 1√∏s
j=1 detBj

|ν1 ∧ · · · ∧ νn|.

One can check that the measure defined by (2.4) does not depend on
the choice of the local adapted frame, and can be taken as the definition
of Popp’s measure. It is not hard to see, using the very definition, that
if q ∈ Ō is a non-equiregular point, then lim

√∏
detBj = 0 hence the

Radon–Nikodym derivative of Popp’s measure computed with respect to
any globally smooth measure on N diverges to +∞ on the singular region
Z. Uniform estimates of this divergence can be found in [5].

2.2. Popp-regular structures

The study of condition (1.4) is a difficult task, because it requires the
explicit knowledge of the distance from the singular set. In the following we
define a class of sub-Riemannian structures, to which Theorem 1.1 applies,
without knowing an explicit expression for δ. Let $ be a reference measure,
smooth and positive on the whole N and let P denote Popp’s measure,
smooth on M = N \ Z. We define the function ρ : N → R by setting

(2.5) ρ(p) =
{( dP

d$
)−1 (p) if p ∈ N \ Z,

0 if p ∈ Z.

This is the unique continuous extension to Z of the reciprocal of the Radon–
Nikodym derivative of P with respect to $. Notice that ρ is smooth on
N \ Z.

VOLUME 33 (2015-2016)
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Definition 2.3. — We say that a sub-Riemannian manifold N is Popp-
regular if it is equiregular outside a smooth embedded hypersurface Z con-
taining no characteristic points, and there exists k ∈ N such that, for
all q ∈ Z there exists a neighborhood O of q and a smooth submersion
ψ : O → R such that the function ρ defined in (2.5) satisfies ρ|O = ψk.

Definition 2.3 generalizes the notion of regular almost-Riemannian struc-
ture given in [8, Def. 7.10].

Proposition 2.4. — Let N be a complete and Popp-regular sub-Rie-
mannian manifold, with compact singular set Z. Then, the sub-Laplacian
∆P with domain C∞c (M) is essentially self-adjoint in L2(M), where M =
N \ Z or one of its connected components. Moreover, if M is relatively
compact, the unique self-adjoint extension of ∆P has compact resolvent.

This settles, at least in the Popp-regular case, the conjecture proposed
in [3] on the essential self-adjointness of the intrinsic sub-Laplacian.

2.3. Examples

We start by considering a family of structures generalizing the Martinet
structure. These are complete sub-Riemannian structures on R3, equiregu-
lar outside a hypersurface Z ⊂ R3, on which the distance from Z is explicit.
Using Theorem 1.1 we deduce essential self-adjointness of ∆ = ∆P defined
on C∞c (N \ Z).

Example 2.5 (k-Martinet distribution). — Let k ∈ N. We consider the
sub-Riemannian structure on R3 defined by the following global generating
family of vector fields:

(2.6) X1 = ∂x, X2 = ∂y + x2k∂z.

The singular region is Z = {x = 0} and the distance from Z is δ(x, y, z) =
|x|. Using formula (2.4), the associated Popp’s measure turns out to be

(2.7) P = 1
2
√

2k|x|2k−1
dx ∧ dy ∧ dz.

The case k = 1 is the standard Martinet structure considered in the intro-
duction. Notice that the injectivity radius from Z is infinite, hence even
if Z is not compact we can apply Theorem 1.1. We compute the effective
potential Veff using (1.11). Indeed we have

(2.8) θ = θ(x) = 1
2 log 1

2
√

2kx2k−1
,

SÉMINAIRE DE THÉORIE SPECTRALE ET GÉOMÉTRIE (GRENOBLE)



ON THE ESSENTIAL SELF-ADJOINTNESS OF SUB-LAPLACIANS 11

and thus, using (1.11), we have

(2.9) Veff(x) = 4k2 − 1
4x2 >

3
4x2 , ∀ k > 1.

Hence (1.4) is satisfied, and ∆P with domain C∞c (R3 \ Z) is essentially
self-adjoint.

We generalize Example 7.2 in [8], showing an example of non-Popp-
regular sub-Riemannian structure to which Theorem 1.1 does not apply.

Example 2.6 (non-Popp-regular sub-Riemannian structure). — Consi-
der the sub-Riemannian structure on R4 given by the following generating
family of vector fields:

(2.10) X1 = ∂1 + x3∂4, X2 = x1(x2`
1 + x2

2)∂2, X3 = ∂3.

The singular region is Z = {x1 = 0}. The following set of vector fields is
an adapted frame on R4 \ Z.

(2.11) X1, X2, X3︸ ︷︷ ︸
D1

, X4 = [X3, X1] = ∂4︸ ︷︷ ︸
D2/D1

.

Using formula (2.4), we have the following expression for Popp’s measure

(2.12) P = 1√
2x1(x2`

1 + x2
2)

dx1 ∧ dx2 ∧ dx3 ∧ dx4,

or, equivalently, P = x
a(x)
1 e2ϕ(x)dx1 ∧ dx2 ∧ dx3 ∧ dx4, where

(2.13)

a(x) =
{
−(2`+ 1) x2 = 0,
−1 x2 6= 0,

ϕ(x) =
{
− 1

2 log
√

2 x2 = 0,
− 1

2 log
(√

2(x2`
1 + x2

2)
)

x2 6= 0.

Noticing that δ(x1, x2, x3, x4) = x1, the effective potential reads

(2.14) Veff = a(x)(a(x)− 2)
4x2

1
+R(x),

with R(x) = a(x)
x1

∂1ϕ(x) + (∂1ϕ(x))2 + ∂2
1ϕ(x).

We have

(2.15) R(x) =

0 x2 = 0,
`t2`−2

(t2`+x2
2 )2

[
(`+ 2)t2` + (2− 2`)x2

2
]

x2 6= 0.

VOLUME 33 (2015-2016)
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Combining (2.13)-(2.15) we deduce that Veff = 3/(4x2
1) + R(x) if x2 6= 0,

and it is easy to see that the behavior of R(x) depends on the choice of
the parameter `. In particular, if ` = 1, R(x) > 0 and we deduce essential
self-adjointness of ∆ = ∆P by Theorem 1.1. On the other hand, if ` > 1,
along any sequence xi = (1/i, 1/i, 0, 0), we have xi1R(xi) → −∞. Hence,
we cannot apply Theorem 1.1.

3. Characteristic points

In this section, we discuss the case in which the singular region has char-
acteristic points. This is a subtle and difficult technical issue, so we consider
the easiest case, which appears already in the setting of almost-Riemannian
geometry. In this case, the metric structure in the regular region is actually
Riemannian, and the Popp sub-Laplacian is simply the Laplace–Beltrami
operator in the regular region. See [8, §7] for a self-contained and concise
introduction to almost-Riemannian geometry.

Consider the almost-Riemannian structure on R2 defined by the global
vector fields:

(3.1) X1 = ∂x, X2 = (y − x2)∂y.

The singular region is the parabola Z = {y = x2} and the origin is a
characteristic (or tangency) point for Z. We stress that the essential self-
adjointness properties of the Laplace–Beltrami operator in the regular re-
gion remain unknown even in this simple case.
In presence of characteristic points, the distance from the singular region

is not smooth, and in particular the normal tubular neighborhood of Propo-
sition 1.3 does not exist. Therefore, the arguments of [8, 4] cannot be ap-
plied. To see that δ is non-smooth arbitrarily close to a characteristic point,
notice that X1, X2 are invariant under the reflection (x, y) ∈ R2 7→ (−x, y).
Therefore, for any p ∈ {(x, y) ∈ R2 | x = 0, y 6= 0} there exist at least two
distinct minimizing geodesics joining p with the characteristic point. In
this case, it is well known that the distance is not differentiable at p. (See
Figure 3.1).
Let M be either connected component of R2 \ Z. The Riemannian mea-

sure is

(3.2) dP = 1
|y−x2|dxdy,

and the Laplace–Beltrami operator H = −∆ is

(3.3) H = −∂2
x−(y−x2)2∂2

y−
2x

y − x2 ∂x−(y−x2)∂y, Dom(H) = C∞c (M).
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Figure 3.1. Some metric properties of the almost-Riemannian struc-
ture (3.1). Left: geodesics satisfying the necessary condition for mini-
mality from Z (red parabola) and starting at points of Z with x > 0.
Numerical evidence suggests that they are minimizing until they cross
the vertical axis. Right: Level sets of the distance from Z.

Consider the unitary transformation T : L2(R2,dxdy) → L2(R2,P) given
by

(3.4) Tu(x, y) =
√
|y − x2|u(x, y).

The operator H is unitary equivalent to H̃ = T−1 ◦H ◦ T , with domain
C∞c (M). A straightforward computation yields

(3.5) H̃ = −∂2
x−(y−x2)2∂2

y−2(y−x2)∂y+
(

1
(y − x2) + 3x2

(y − x2)2 −
1
4

)
,

The above operator is of the form H̃ = −∆̃ + V , where ∆̃ is the Laplace
operator of the non-complete Riemannian metric defined on M by (3.1),
but associated with the Lebesgue measure, and

(3.6) V (x, y) = 1
(y − x2) + 3x2

(y − x2)2 −
1
4 .

This class of Schrödinger-type operators has been studied in [8]. There,
at least when the almost-Riemannian distance from Z is smooth, it was
proved that a sufficient condition for essential-self adjointness is

(3.7) V (x, y) > 3
4

1
δ(x, y)2 −

κ

δ(x, y) ,

for some κ > 0. As we remarked, the almost-Riemannian distance from Z
is not smooth, but condition (3.7) still make sense. One could hope that,
at least in this case, (3.7) is still sufficient for essential self-adjointess.
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Although in principle it is possible to compute δ explicitly, and hence
verify (3.7), such a computation seems to be very hard to obtain due to
the apparent non-integrability of the associated Hamilton equations. In
order to obtain some insights on the validity of (3.7) we approximate δ by
assuming that the minimizing geodesic from (x, y) to Z to be given by the
integral curves of ±X1, that is

(3.8) δ(x, y) ' |√y − |x||.

Numerical experiments suggest that this approximation is reasonable at
least for (x, y) sufficiently near the singularity (i.e. |y − x2| small). Unfor-
tunately, a simple computation shows that, assuming the validity of this
approximation, (3.7) is not satisfied near the origin on either side of the
singularity.
This suggests that a direct extension of the techniques of [8, 4], with

some technical workaround to deal with the non-smoothness of δ, is not
the right approach.
We stress that Proposition 1.3 is merely a technical tool to prove the

Agmon-type estimate 1.8. The latter is the fundamental result which pre-
vents weak solutions of H∗ψ = Eψ to be supported arbitrarily close to Z.
We observe that for any ε > 0, the set Z ∩ {|x| > ε} possess no character-
istic points, and thus an Hardy-type inequality as (1.14) can be deduced
outside a small ball Bε centered in 0 (with constants that are not uniform,
and actually explode, for ε → 0). Therefore, our current line of investiga-
tion aims to pair the aforementioned inequality with a second one, valid on
Bε, and where δ is replaced by the almost-Riemannian distance from the
origin.
The obstacle to this line of proof is the helplessness of the current state-of-

the-art techniques to derive Hardy-type inequalities close to the character-
istic point. This requires a precise and deep investigation of the properties
of geodesics, which we are not able to carry out. However, we remark that
numerical experiments suggest that such an Hardy inequality should hold.
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